Smartphone sensors can be used by hackers to access your PIN number

    Using a combination of information gathered from six different sensors found in smartphones and machine learning and deep learning algorithms, the researchers succeeded in unlocking the smartphone.

    |

    While data security has always been a major concern in the tech and the cyber world, instruments in smartphones such as the accelerometer, gyroscope and proximity sensors can be a potential security vulnerability according to a study. Researchers, including one of Indian-origin, have now found that data from these sensors could be used by hackers to guess the security PIN and unlock it.

    Smartphone sensors can be used by hackers to access your PIN number

     

    Using a combination of information gathered from six different sensors found in smartphones and machine learning and deep learning algorithms, the researchers succeeded in unlocking Android smartphones with a 99.5 percent accuracy within only three tries, said the study.

    The researchers believe their work, published in the journal Cryptology ePrint Archive, highlights a significant flaw in smartphone security, as using the sensors within the phones require no permissions to be given by the phone user and are openly available for all apps to access.

    Led by Shivam Bhasin of Nanyang Technological University, Singapore (NTU Singapore), the researchers used sensors in a smartphone to model which number had been pressed by its users, based on how the phone was tilted and how much light is blocked by the thumb or fingers.

    The team of researchers took Android phones and installed a custom application which collected data from six sensors: accelerometer, gyroscope, magnetometer, proximity sensor, barometer and ambient light sensor.

    "When you hold your phone and key in the PIN, the way the phone moves when you press 1, 5 or 9, is very different. Likewise, pressing 1 with your right thumb will block more light than if you pressed 9," Bhasin said.

    The classification algorithm was trained with data collected from a group of people, who each entered a random set of 70 four-digit PIN numbers on a phone. At the same time, it recorded the relevant sensor reactions.

     

    Known as deep learning, the classification algorithm was able to give different weightings of importance to each of the sensors, depending on how sensitive each was to the different numbers being pressed. Although each individual enters the security PIN on their phone differently, the scientists showed that as data from more people is fed to the algorithm over time, success rates improved.

    So while a malicious application may not be able to correctly guess a PIN immediately after installation, using machine learning, it could collect data from thousands of users over time from each of their phones to learn their PIN entry pattern and then launch an attack later when the success rate is much higher.

    This study shows how devices with seemingly strong security can be attacked using a side-channel, as sensor data could be diverted by malicious applications to spy on user behavior and help to access PIN and password information, and more, said Professor Gan Chee Lip, Director of the Temasek Laboratories at NTU.

    The researchers said mobile operating systems should restrict access to the six sensors in future so that users can actively choose to give permissions only to trusted apps that need them.

    Inputs from IANS

    Read More About: smartphones mobiles news
    X

    Stay updated with latest technology news & gadget reviews - Gizbot

    Notification Settings X
    Time Settings
    Done
    Clear Notification X
    Do you want to clear all the notifications from your inbox?
    Yes No
    Settings X
    We use cookies to ensure that we give you the best experience on our website. This includes cookies from third party social media websites and ad networks. Such third party cookies may track your use on Gizbot sites for better rendering. Our partners use cookies to ensure we show you advertising that is relevant to you. If you continue without changing your settings, we'll assume that you are happy to receive all cookies on Gizbot website. However, you can change your cookie settings at any time. Learn more