Now, Wi-Fi reflector chip to speed up wearable devices

By Gizbot Bureau
|

Scientists, including those from NASA, have developed a 'Wi-Fi microchip' for wearable devices that transmits information faster and uses less power than traditional receivers.

Now, Wi-Fi reflector chip to speed up wearable devices

If the power necessary to transmit and receive information from a wearable to a computer, cellular or Wi-Fi network were reduced, users could get a lot more mileage out of the technology they are wearing before having to recharge it, researchers said.

Adrian Tang of NASA's Jet Propulsion Laboratory in Pasadena, California and M C Frank Chang at the University of California, Los Angeles, have been working on microchips for wearable devices that reflect wireless signals instead of using regular transmitters and receivers.

SEE ALSO: Top 10 Best Wi-fi Enabled Smartphones with Unconventional Primary Cameras to Buy in India

Their solution transmits information up to three times faster than regular Wi-Fi. "The idea is if the wearable device only needs to reflect the Wi-Fi signal from a router or cell tower, instead of generate it, the power consumption can go way down (and the battery life can go way up)," Tang said.

Information transmitted to and from a wearable device is encoded as 1s and 0s, just like data on a computer. This needs to be represented somehow in the system the wearable device uses to communicate.

Now, Wi-Fi reflector chip to speed up wearable devices

When incoming energy is absorbed by the circuit, that's a "0," and if the chip reflects that energy, that's a "1." This simple switch mechanism uses very little power and allows for the fast transfer of information between a wearable device and a computer, smartphone, tablet or other technology capable of receiving the data.

The challenge for Tang and his colleagues was that the wearable device is not the only object in a room that reflects signals - so do walls, floors, ceilings, furniture and whatever other objects happen to be around. The chip in the wearable device needs to differentiate between the real Wi-Fi signal and the reflection from the background.

To overcome background reflections, Tang and Chang developed a wireless silicon chip that constantly senses and suppresses background reflections, enabling the Wi-Fi signal to be transmitted without interference from surrounding objects.

They tested the system at distances of up to 20 feet. At about 8 feet, they achieved a data transfer rate of 330 megabits per second, which is about three times the current Wi-Fi rate, using about a thousand times less power than a regular Wi-Fi link.

A base station and Wi-Fi service are required for the system to work. To compensate for low power drain on the wearable, the computer or other technology it's communicating with must have a long battery life or be plugged in.

There are a multitude of potential applications for the new technology, including in space. For example, astronauts and robotic spacecraft could potentially use this technology to transmit images at a lower cost to their precious power supplies. This might also allow more images to be sent at a time.

Source: PTI

Best Mobiles in India

Read More About: nasa Wifi wearable devices

Best Phones

Get Instant News Updates
Enable
x
Notification Settings X
Time Settings
Done
Clear Notification X
Do you want to clear all the notifications from your inbox?
Yes No
Settings X
X